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Project Overview

Timeline Barriers
• Project start date  : Oct. 2016
• Project end date  : Sep. 2019
• Percent complete : 10%

• Research on Connected & Automated 
Vehicles (CAVs) focused on safety

• Little research combining CAVs and 
advanced powertrain technologies 

• Complexity of optimization
• Lack of practical tools for energy-efficient 

CAV control development

Budget Partners
• FY17-FY19 Funding: $2,480,000
• FY17 Funding Received : $836,000

• Argonne: lead
• LLNL, NREL: provide data from real-world 

testing
• Active discussions with universities (data) 

and OEMs (modeling needs)
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Project Relevance
• Besides electrification, two major disruptive trends in the automotive world:

Connectivity to the cloud, to other vehicles, to the infrastructure
⇒ Information about surrounding environment, forecast of future driving

Automation, partial or full, enabled by sensor and machine vision
⇒ Intelligent control of the velocity

• Most research is focused on safety; little exploration of energy saving potential 

Objectives: Perform control-focused research using simulation
⇒ Powertrain and velocity control strategies for minimum energy 

consumption and acceptable travel time
⇒ Energy impacts for a broad range of powertrain technologies

 Extends previous VTO-funded work on vehicle control and energy management of 
electrified vehicles
 Critical to the VTO mission:

– Potential of reducing vehicle energy consumption through control
– Will assess how expected energy efficiency gains from future vehicle powertrain 

technologies will change with connectivity and automation
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Approach

• Vehicle-centric
– Work is focused on a small number of vehicles, from single veh. to a platoon 
– Large system-wide aspects are not considered at this stage, but in future years, outputs 

of this project will be transferred to “system-wide” tools (e.g. traffic flow microsimulation, 
POLARIS, etc.)

• Simultaneous control of velocity and powertrain
– Compare sequential control (1st velocity, 2nd powertrain) and combined control
– Research how “optimal” velocity profiles differ for various powertrains

• High-fidelity powertrain models
– Use Autonomie powertrain models : leverage large library of existing models of current 

and future technologies
– Take into account drivability and dynamic aspects (e.g. engine starts, jerk, etc.)

• Model-Based System Engineering (MBSE)
– Build upon Autonomie’s MBSE framework
– Use automated building, modularity, elementary building blocks, metadata, etc. to 

efficiently build scenarios for simulation
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Approach
• Within SMART CAV pillar, this project helps quantify energy benefits from CAV 

operations, and will provide outputs to system-level tasks (e.g. microsimulation, 
city-wide models)

• Structure in 3 complementary focus areas:
Framework development

 Simulate driving on actual roads, with 
naturalistic drivers interacting with the road 
infrastructure and with other vehicles

 Simulink-based, integrated with Autonomie
 Will allow to simulate various control 

strategies on a broad range of scenarios and 
powertrains

Control development

 Implement heuristic velocity control 
strategies from literature

 Research optimal control strategies, and 
develop implementations: Pontryagin
Minimum Principle, Model-Predictive Control 

Case studies and analysis

 Develop a broad range of 
road/connectivity/automation scenarios

 Quantify energy saving potential for various 
powertrains: conventional ICE, start-stop, 
hybrids, EVs, etc.
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Milestones

Case study

Framework

Control
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TECHNICAL ACCOMPLISHMENTS



Framework for Integrated Powertrain-CAV 
Simulation
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• Simulink-based, and uses Autonomie powertrain models
• Includes models of intersections, human driving and 

connected/automated driving
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Framework Relies on Automated Building
Connected traffic light

Non-connected traffic light

Stop

…
…

controller powertrain

Vehicle 1

inputs

outputs

inputs

outputs

inputs

outputs

Veh1: 
Conv. Midsize 

Veh2: 
BISG HEV Midsize 

Veh3: 
Split HEV Midsize 

Automated building of route model
Route definition in mapping 

tool (HERE) 
Extraction of intersection types and speed limits; 
user chooses whether traffic lights are connected 

or not
• One intersection = one instance of 

corresponding intersection model 
• Each intersection sends out state 

signals

Speed limits = f(distance)

Definition/Selection of Vehicles in 
Autonomie

Building of signal router, vehicle, 
controller and powertrain blocks

signal 
router 1

Vehicle 2Signal 
router 2

Automated building of vehicle and signal routers

For each vehicle the signal router links the vehicle 
with relevant I/Os, to model real-world interactions:

– Vehicles  vehicles (V2V Radio, sensors)
– Infrastructure  vehicles (V2I radio, image 

recognition – e.g. signal state)
– Infrastructure  driver (“visual” interpretation of 

road signage)
– Vehicles  driver (gap with preceding vehicle) 
– Digital map  Vehicle (electronic horizon)
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Multiple Scenarios Modeled
• Two main situations for both human and automated driving:

– “road-following”: target cruising speed at or below speed limit, stop at red light and stop 
sign, slow down at turns

– “car-following”: maintaining a safe distance with preceding vehicle
• Human driving model:

– Deterministic: road-following and car-following with typical human reaction times, 
acceleration and deceleration profiles

– Probabilistic: adding a probabilistic/stochastic aspect (future work)
• Automated, non-connected driving model: 

– Baseline similar to deterministic human model, but with different calibration (reaction time 
limited by sensor response time, reduced aggressivity)

– Some potential for optimization for cruising, acceleration, approach, etc. 
– A model for: e.g. Adaptive Cruise Control (ACC) 

• Automated and connected driving model:
– Better knowledge about surrounding vehicles and road features ahead provides opportunity 

for optimization (e.g. traffic signal eco-approach)
– A model for: Cooperative ACC (CACC), which results in shorter gap with preceding vehicle

• Traffic conditions:
– Traffic not modeled intrinsically, due to limited number of simulated vehicles
– Can be modeled with hybrid model of lead vehicle: “speed-trace-following” and “road-

following”
– Speed trace can be generated using constrained Markov chain algorithm
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Use Case Example: Highway CACC with 
Various Powertrains

Veh1: 
Conv. Midsize 

Veh2: 
Conv. Midsize 

Veh3: 
BISG HEV Midsize 

Veh4: 
Split HEV Midsize 

Fuel Consumption Comparison (For cruise mode)
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CACC Control

• Multi-vehicle run with a mix of powertrain technologies

• Lead vehicle follow EPA Highway drive cycle

• Following vehicles are “human-driven” at low-speeds, and switch to CACC above 40 mph

• Each vehicle aerodynamic drag is reduced as a function of gap  (and speed?)
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Identifying Optimal Velocity Control Using 
Optimal Control Theory
• Ego CAV is provided with various look-ahead information: speed limit, 

grade, stops, etc.
• What velocity when/where?

𝑣𝑣

𝑠𝑠

𝑣𝑣lim

𝛼𝛼

𝑠𝑠

Constraint: Speed limits

Slope changes

Perturbation: Slope

Final condition: 
terminal time

CAV optimization 
problem is often 
an energy 
consumption vs. 
travel trade-off
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Applying the Pontryagin’s Minimum Principle (PMP) to 
Compute Engine Torque in a Conventional Vehicle

𝑣𝑣

𝑠𝑠

𝑣𝑣lim

Math. Formulation of OCP

min 𝐽𝐽 = �
0

𝑡𝑡f
𝑚̇𝑚f 𝑣𝑣,𝑇𝑇eng d𝑡𝑡

s.t. 𝑣̇𝑣 = 𝑓𝑓(𝑣𝑣,𝑇𝑇eng)

Hamiltonian: 𝐻𝐻 = 𝑚̇𝑚f + 𝜆𝜆 𝑣̇𝑣

Optimization Algorithm

Control Oriented Models

powertrain components + long. veh. dynamics

Derive using PMP conditions

Calculates the driving torque, gear, brake 
(optimized control) depending on two parameters 
that are adjusted upon the constraints

𝑇𝑇eng∗ 𝑡𝑡 = 𝜓𝜓 𝑣𝑣 𝑡𝑡 ,𝑝𝑝1,𝑝𝑝2 , 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡f]

Divide future in uniform driving 
conditions (speed limit, slope, etc.)

Varying the parameter pair results in different 
trajectories: so-called Single Shooting Method

Adjust (𝑝𝑝1, 𝑝𝑝2)
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PMP Results

Offline optimization

Scenario: 
Start speed =15 mph; end speed = 25 mph
Target distance 1.98 Mile. 
Human driver completed in 136.9 s. 
Opt. algorithm aims at the same time. 

Fuel 
[gallon]

Distance [mile] Fuel Economy 
[mpg]

Opt. 0.0589 1.927 32.7

Human 0.0712 2.003 28.2

Speed deviation (―offline vs. ―Autonomie) is mainly 
due to time delay in gear shifting and lack of feedback 
loop  
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Implementation-Oriented Control: Model-
Predictive Control (MPC)

Δs = 25 m

Distance 

v

Prediction horizon 
( 200 m)

k = 0 k = 1 k = 2 …

Reference 
speed, 
slope

3. Apply only first command

4. Receding Horizon: move 
one step and repeat

2. Solve optimal control problem for 
entire horizon (next 200m)

Elevation

 MPC is a framework for taking into account continuous look-ahead information for making optimal control 
decision, while including a feedback-loop (receding horizon)
 Very efficient when model is linear or quadratic (⇒ developed quadratic models for conventional vehicle)
 Scenario: highway cruise-control ⇒ what optimal torque/velocity?

1. Load reference speed & slope for horizon (e.g. next 200m)
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Application of MPC to a Conventional 
Vehicle
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Route definition: 
Knoxville to Asheville 
(highway with grades)

Extraction of 
route attributes 
(slope, speed 
limits) from HERE 
maps

Sensitivity analysis: 
Fuel/Time trade-off

Offline MPC 
optimization with 
backward model

Simulation in 
Autonomie: “optimal” 
vs. reference speed 
trace

Preliminary results show up to 4% fuel 
savings compared to reference case (cruise 
control at set below speed limit)
But it comes at the expense of longer travel 
time (+5 min over 2h trip) 
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Response to Previous Year Reviewers’ 
Comments

Project was not reviewed in the past
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Partnerships and Collaborations

LLNL provides aerodynamic drag reduction coefficients from 
3D modeling and wind tunnel

NREL tests platooning trucks and provides results and data 
from real-world testing

Collaboration on designing MPC control

Exchanges about control for platooning trucks (Auburn tests 
them on their test track)

Active discussion about real-world driving data (human and 
connected/automated)

Active discussion about Autonomie-based framework for CAV 
simulation

Digital maps with detailed road features 

Turner-Fairbanks 
Highway Research Center
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Remaining Challenges and Barriers

• Complexity of control problem
–Up to 3 control variables (e.g. parallel HEV: engine & motor torques, 

gear), 3 states (velocity, position/time, battery SOC) + drivability 
constraints (e.g. limited engine starts)

–Large number of scenarios sometime require different problem 
formulations   

– Implementation of theoretical concepts requires taking into account 
transients and corner cases

• Calibration: optimal control often requires calibration to 
find the right trade-off between various objectives: energy, 
travel time, drivability
• Modeling human driving: human behavior is not fully 

deterministic, and depends on individuals (e.g. aggressive 
vs passive drivers)
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Proposed Future Research
• Simulation framework for CAV:

– Continue development in FY18, with a focus on better integration with Autonomie
– Improve driver model to add stochasticity (FY18): 

– Tap into driver models in traffic flow micro-simulators
– Use real-world datasets (e.g. NGSIM, SHRP2)

– Develop processes to link to traffic flow microsimulators

• Case studies (FY17):
– Implement rule-based “eco-driving” algorithms inspired from literature for connected automated 

driving
– Run case study for connected traffic signal intersection eco-approach for various powertrains
– Use aero data from LLNL to run study on truck platooning and compare with real-world test 

data from NREL (⇒ towards validation)

• Optimal control
– FY17: work toward implementation of optimal control (MPC, PMP) for conventional vehicles 
– FY18: explore optimal control for EVs and HEVs
– Develop “optimization-based” heuristic control in case optimal control proves to be too complex

Any proposed future work is subject to change based on funding levels
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Summary

• This project supports DOE’s SMART goal of estimating the impact of 
future mobility systems, as well as proposing solutions to make them 
more energy-efficient.

• We study how connectivity/automation (e.g. platooning, eco-approach, 
“self-driving) and advanced powertrain technologies (HEVs, EVs, etc.) 
interact ⇒ synergies or diminishing returns?

• Advanced control of velocity and powertrain will be implemented in a 
framework with realistic information flows, in combination with high-
fidelity plant models and for a wide array of scenarios 
⇒ More accurate estimation CAV energy efficiency
⇒ Energy-saving control algorithms closer to real-world implementation
⇒ Preliminary results show energy saving potential 

• Framework for CAV simulation will eventually be shared with the 
research/industry community to foster further development and 
deployment of energy-saving CAV control algorithms.
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